Ind J. Physiol., 1990; 34(2): 109-114

STUDIES ON NON-STEROIDAL ANTI-INFLAMMATORY AND RELATED BIOLOGICAL ACTIVITIES OF 5-(INDAN-1'-YL)TETRAZOLES AND THEIR INTERMEDIATES*

SAUMENDRA M. RAY, AKHILES ROY AND SAMIR C. LAHIRI**

Department of Pharmaceutical Technology, Jadavpur University, Calcutta - 700 032

(Received on May 8, 1989)

Abstract: Anti-inflammatory, analgesic and anti-pyretic activities of three new 5-(Indan-1'-y1)tetrazoles and anti-inflammatory activity of corresponding carboxamides were compared to those of standard drugs, phenylbutazone and aspirin. The results indicated 5-(Indan-1'-y1)tetrazole as the most promising compound in chronic anti-inflammatory and anti-pyretic tests.

Key words : indanyltetrazoles indanylcarboxamides anti-inflammatory analgesic anti-pyretic

INTRODUCTION

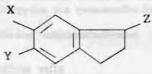
In our earlier studies, we reported on the synthesis and the anti-inflammatory activity of some indanylmethyltetrazoles (1, 2). Among these compounds 5-(6'-Methoxyindan-1'-y1)methyltetrazole and 5-(5', 6'- Dimethoxyindan-1'-y1)methyltetrazole exhibited promising anti-inflammatory and related biological activities. These findings prompted us to undertake further synthesis (3) and biological screening of 5-(Indan-1'-y1)tetrazoles and their intermediate carboxamides. Relatively poor performance of Indan-1-acetonitriles (4) led to exclusion of the corresponding - carbonitriles from screening programme.

METHODS

Male albino Charles Foster rats, 160 ± 10 g and 225 ± 25 g, were used for inflammation and pyrexia models respectively. Male albino Swiss mice $(18 \pm 2$ g) were used for analgesic screening. National Research Council's guideline was followed for the care and use of all laboratory animals. They were maintained on standard laboratory animal feed (Lipton India) supplemented by fresh greens and clean tap water. The animals were used after acclimatization to the laboratory environment for at least 8 days. Only water was allowed *ad lib* during experiments.

Acute Anti-inflammatory Activity : Carrageenan-induced Oedema : The method was essentially that of Winter et al (5) with minor modifications (6). Test compounds and Phenylbutazone B.P. were dissolved in 50% aqueous Propylene Glycol B.P. with warming if necessary and fed orally. The paw volume upto a fixed mark at the level of lateral malleolus was measured before and after 1, 2, 3, and 24 hr of carrageenan (Marine Colloids, USA) administration. The average % increase in paw volume was calculated and compared against that of the control (vehicle-treated) group. Percent inhibition was calculated using the formula : % Inhibition = $(V_c - V_r) \times 100/V_c$, where V_c and V_r represent average paw volume in control group and treated group respectively. The results were analysed using Student's t-test.

Chronic Anti-inflammatory Activity : "established" Adjuvant-induced Arthritis : The method was essentially that of Newbould (7) with minor modifications. Random distributed rats injected with Freund's complete adjuvant (DIFCO, USA)


*This work was financially supported by University Grants Commission, New Delhi, and laboratory facilities were provided by the Dept. of Pharm. Tech., Jadavpur University Calcutta.

^{**}Corresponding Author

110 Ray et al.

(0.05 ml, sc, plantar surface of right hind paw) were left untreated until day 14. Daily treatment (po) was then continued to 25th day. The effects of treatment were assessed by measurements of both hind paw volume and change in body weight. Severity of secondary lesions was arbitrarily assessed as absent-0, mild-1, moderate-2, moderately severe-3 and severe-4. Joint mobility was assessed by measuring the angle through which the hind paws could be moved easily (8). These records were made on day-0, -14, and then on every second or third day. Each animal served as its own control. The results of day-25 were compared with those of day-14 taking day-0 as base within the group. Percent improvement was calculated using the formula : % improvement = $[\{(V_{14} - V_0) - (V_{25} - V_0)\} \times 100] / (V_{14} - V_0)$, where V_0 , V_{14} and V_{25} represent paw volume or joint mobility on day-0, -14 and -25 respectively. Results were analysed using Student's t-test for paired sets for % improvement in right and left paw volumes and joint mobility while Wilcoxon's signed rank test was employed for analysis of secondary lesion scores.

TABLE I : Structure and acute anti-inflammatory activity of Indan derivatives.

Compound	Structure	Dose	P	ercent increase* in pa	w volumes $(\overline{X} \pm SEM)$	
No	substitutents	mg/kg	1 hr	2 hr	3 hr	24 hr
RL-1	x=y=H z=CONH	100	NS	NS	76.5 ± 7.03^{e} (18.64)	NS
	er (T) is in a	200	20.70 ± 2.95^{a} (49.71)	47.55 ± 6.5^{a} (39.82)	65.34 ± 2.95^{a} (30.51)	39.28 ± 1.98 ³ (27.23)
RL-2	x=OCH ₃ , y=H z=CONH,	100	26.16 ± 3.11^{a} (36.44)	$60.61 \pm 7.08^{\circ}$ (23.29)	79.12 ± 7.55^{f} (15.86)	40.66 ± 3.90° (24.68)
		200	24.45 ± 5.47 ^d (40.59)	56.15 ± 3.78^{a} (28.93)	65.34 ± 6.67^{b} (30.51)	32.81 ± 4.14 ⁴ (39.22)
RL-3	x=y=OCH ₃ z=CONH ₄	200	29.78 ± 3.14 ^c (27.29)	60.98 ± 5.14 ^d (22.82)	66.66 ± 6.18^{b} (29.11)	35.84 ± 3.96 ^b (33.61)
RL-4	x=y=H z=CN	Not Done	(21.23)	(22.02)	(23.11)	(55.01)
RL-5	x=O'CH ₃ , y=H z=CN	Not Done	Incruzie (la grea			
RL-6	x=y=OCH, z=CN	Not Done				
RL-7	x=y=H z=5-tetrazole	100	30.30 ± 0.66 ^a (26.85)	53.01 ± 1.18^{a} (32.91)	67.67 ± 1.69^{a} (28.03)	37.08 ± 0.88 ⁴ (31.31)
RL-8	x=OCH ₃ , y=H z=5-tetrazole	100	NS	NS	NS	NS
RL-9	x=y=OCH, z=5-tetrazole	100	NS	NS	NS	44.24 ± 1.31 ⁴ (18.04)
Phynylbutaz	me	100	24.11 ± 1.00^{a} (41.42)	34.11 ± 0.86 ^a (56.83)	49.55 ± 1.88^{a} (47.30)	43.59 ± 0.68 ^a (19.25)
Control (50% Aq. P	ropylene Glycol)		41.16 ± 0.79	79.01 ± 1.18	94.03 ± 1.02	53.98 ± 0.67

*After carrageenan administration (in parantheses, % inhibition of oedema). Paw volume is expressed in change of height (in mm) of Hg-bath (X \pm SEM) (6); n=6 in all groups.

a-f Probablity values (calculated as compared to control using Student's 1-test) : a <0.001, b <0.005, c <0.010, d <0.025, e <0.05, f <0.10,

NS - Not Significant

All drugs were administered orally (in 50% propylene glycol) 1 hr before carrageenan administration.

Ind. J. Physiol. Pharmac., 1990; 34(2)

Anti-pyretic Efficiency : Yeast-induced Pyrexia : A test similar to that of Loux et al (9) was used. Baker's yeast (Shaw-Wallace, India) was used. Rectal temperatures were recorded at hourly intervals upto 3 hr after dosing (po) with tetrazoles or phenylbutazone or Aspirin I.P. or vehicle. Mean temperatures after treatment were compared with those at 18 hr and expressed as 'Temperature - index' (10).

Analgesic Efficiency: Phenylquinone-induced Writhing in Mice: A test similar to that of Hendershot and Forsaith (11) was used. Phenylquinone (Sigma, USA) solution was prepared following Blumberg et al (12). Compounds were administered (sc) to pre-selected random distributed animals; control group received saline. Phenylbutazone and aspirin were used as reference standards. Data were analysed using Student's t-test for unequal groups.

RESULTS AND DISCUSSION

The results of carrageenan-induced oedema test (Table I) show that the test-compounds exhibit variable anti-inflammatory activity, and a few NSAI Indanyltetrazoles and -Carboxamides 111

among them retain significant residual anti-inflammatory activity at 24 hr after a single selected oral dose. A closer look reveals that RL-2 possesses comparatively high initial anti-inflammatory activity; this activity, however, declines rapidly while RL-7 exhibits almost uniform appreciable antiinflammatory activity over the hours. Both the compounds retain significant residual anti-inflammatory activity at 24 hr. Because of these interesting features RL-2 and -7 were further tested in a chronic inflammatory model and both the compounds exhibited significant activity in the Vestablished' adjuvant-induced arthritis model in rats. In this biomodel RL-2 was comparable to phenylbutazone in reducing primary inflammation of the right hind paw but unlike phenylbutazone effectively reduced secondary inflammation of the left hind paw and both were ineffective in increasing joint-mobility, while RL-7 was found to be effective in all respect. None of the agents was, however, capable of reducing secondary lesions (Table II-IV).

Relatively poor performance of the carboxamides as anti-inflammatories prompted us to exclude them from other screening programmes.

TABLE II: Curative anti-inflammatory activity of Indan derivatives : Effect on paw volume of "established" adjuvant - induced arthritic rats.

Compound		Right Pa	aw volume		Left paw (non-injected) volume				
	0 day	14 day	25 day	% Improvement on 25 day	0 day	14 day	25 day	% Improvement on 25 day	
RL-2	1.75±0.04	3.92±0.20	3.45±0.27	23.18±5.38 ^d	1.76±0.03	2.53±0.05	2.33±0.07	25.70±6.55 ^d	
RL-7	1.85±0.05	3.54±0.08	3.02±0.08	31.41±2.16 ^a	1.90±0.04	2.49±0.09	2.22±0.07	44.75±3.25 ^b	
Phenylbutazone	1.83±0.03	4.44±0.38	3.78±0.27	25.16±2.17 ^b	1.83±0.06	2.44±0.16	2.30±0.09	NS	
Vehicle (50% Aqueous Propylene Glyce	1.71±0.05	3.75±0.06	3.99±0.08	-11.44±0.69 ^a	1.69±0.06	2.57±0.06	2.73±0.07	-19.20±1.17 ^a	

All compounds were administered (100 mg/kg) po in 50% aq. propylene glycol.

Paw volume is expressed in change of height (in mm) of Hg-bath (X \pm SEM) (6); n = 6, except vehicle treated group (n = 9). a - d probability values as under Table I but calculated as compared to 14th day within the group.

In phenylquinone-induced writhing test, none of the tetrazoles was comparable to the reference drugs, phenylbutazone or aspirin (Table V). RL-7 was found to be quite active as an anti-pyretic

agent in yeast-induced pyrexia model in rats (Table VI) which corroborates our earlier observation that indanylmethyltetrazoles are better anti-pyretics than analgesics (2).

112 Ray et al.

Right paw mobility (°) Loss of Mobility				Left paw (non-injected) mobility (°)Loss of mobility			
0 day	14 day	25 day	% Improvement on 25 day	0 day	14 day	25 day	% Improvement on 25 day
118.83	26.17	24.84	NS	118.83	5.50	18.17	
	A. 26 M.		THE R. P.				
123.00 ±2.94	43.17 ±6.69	22.50 ±3.03	43.96±9.24°	119.67 ±1.94	12.33 ±2.09	7.17 ±2.14	44.98±7.90 ^b
117.17	30.17	30.50	NS	117.17	8.50	15.30	the part of
±1.08	±11.06	±5.12		±1.08	±2.73	±2.60	
119.11 ±1.34	24.56 ±3.06	26.00 ±2.98	NS	121.78 ±1.96	11.11 ±2.69	24.22 ±3.20	1 1 1 1 stm //
	0 day 118.83 ±1.42 123.00 ±2.94 117.17 ±1.08 119.11	0 day 14 day 118.83 26.17 14 16.70 123.00 43.17 12.94 16.69 117.17 30.17 11.08 111.06 119.11 24.56 119.11 24.56	0 day 14 day 25 day 118.83 26.17 24.84 25 24.84 25 24.84 25 24.84 25 24.84 25 24.84 25 24.84 25 24.84 25 24.84 25 24.84 25 24.84 25 24.84 25 24.84 25 24.84 25 24.84 25 26.00 123.00 43.17 22.50 25.00 25.03 117.17 30.17 30.50 25.12 119.11 24.56 26.00 26.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 day 14 day 25 day % Improvement on 25 day 0 day 118.83 26.17 24.84 NS 118.83 ±1.42 ±6.70 ±3.70 ±1.42 123.00 43.17 22.50 43.96±9.24° 119.67 ±2.94 ±6.69 ±3.03 ±1.94 117.17 117.17 30.17 30.50 NS 117.17 ±1.08 ±11.06 ±5.12 ±1.08 ±1.08 119.11 24.56 26.00 NS 121.78	$0 \ day$ 14 \ day25 \ day% Improvement on 25 \ day0 \ day14 \ day118.8326.1724.84NS118.835.50 ± 1.42 ± 6.70 ± 3.70 ± 1.42 ± 2.23 123.0043.1722.5043.96 $\pm 9.24^{\circ}$ 119.6712.33 ± 2.94 ± 6.69 ± 3.03 ± 1.94 ± 2.09 117.1730.1730.50NS117.178.50 ± 1.08 ± 11.06 ± 5.12 ± 1.08 ± 2.73 119.1124.5626.00NS121.7811.11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE III: Curative anti-inflammatory activity of Indan derivatives : Effect on joint - mobility of "established" adjuvant - induced arthritic rats.

Paw mobility is expressed in degrees See foot notes to Table II

Experimental results make it clear that RL-7 is the most promising anti-inflammatory test agent in both acute and chronic inflammatory models at the dose level tested. The curative anti-inflammatory activity of the compound as demonstrated in 'established' adjuvant-induced arthritis model may possibly be due to its longer duration of action as observed in the carrageenan-induced oedema test.

The beneficial effects of treatment with RL-2

and -7 were also reflected in relatively higher weight gain compared to that observed in the vehicle-treated group. Both the agents may possibly be less toxic than phenylbutazone as evinced from weight gain (Table IV) and gross observations.

From the pharmacological activity profile of the test agents revealed in this investigation, RL-7 may be considered as the most promising agent among these and is worthy of further investigation.

+ 2.33

+ 6.59

166.0±5.34

Contraction in	Av. Sec	condary lesion sc	ore	LEAST CONTRACTOR	Body w	Body weight (X, gl100 g change		
104	14 day	25 day	Р	51125 1	0 day	14 day	25 day	
RL-2	1.5±0.22	2.17±0.40	NS		158.3±4.2	+ 5.47	+ 14.84	
RL-7	1.17±0.17	1.50±0.43	NS		161.2±4.0	+ 2.07	+ 14.99	
Phenylbutazone	2.67±0.49	2.83±0.48	NS		157.5±5.6	+ 5.18	+ 8.25	

4.00±0.00 < 0.01

TABLE IV: Curative anti-inflammatory activity of Indan derivatives: Effect on body weight and secondary lesion score of "established" adjuvant-induced arthritic rats.

P was calculated using Wilcoxon's signed rank test.

1.78±0.32

See foot notes to Table II

Vehicle (50% ag.

propylene glycol

Ind. J. Physiol. Pharmac., 1990; 34(2)

Compound	A Kall Con Con	No. of writhing $(\overline{X} \pm SEM)$	% Reduction from control	P (Difference from control)
RL-7	44	34.7 ± 3.4	28.2	<0.001
RL-8	39	36.1 ± 3.6	25.3	<0.001
RL-9	30	38.3 ± 4.1	20.7	<0.001
Aspirin	15	19.2 ± 1.6	60.2	<0.001
Phenylbutazone	36	23.1 ± 2.7	52.2	<0.001
Control (Saline)	104	48.3 ± 2.5		

TABLE V : Analgesic activity of Indan derivatives : Effect on phenyl-p-quinone-induced writhing in mice.

All compounds were administered (100 mg/kg) sc, dissolved in aq. NaOH I.P. (pH 7.5 ± 0.2)

Compound	Mean Temperature (°C) after hr of compound administration					
	0	1	2	3		
RL-7	39.3	38.2	38.3	38.0	- 3.4	
RL-8	39.4	38.7	38.5	38.5	- 2.5	
RL-9	39.5	39.2	39.0	39.0	- 1.3	
Aspirin	39.3	38.5	38.4	38.5	- 2.5	
Phenylbutazone	39.4	38.6	38.2	38.4	- 3.0	
Control (pyretic)	39.4	39.5	39.4	39.4	+ 0.1	
Control (nonpyretic)	37.5	37.7	38.0	38.0	+ 1.2	

TABLE VI : Anti	-pyretic activity	of Indan	derivatives : Effect	t on yeast-in	duced pyrexia in rats.
-----------------	-------------------	----------	----------------------	---------------	------------------------

Values are mean (n = 6)

All compounds were administered (100 mg/kg) po dissolved in aq. NaOH I.P. (pH 7.5 ± 0.2)

ACKNOWLEDGEMENTS

The authors thank M/s Alembic Chemical Works Co. Ltd., India, for a gift of Phenylbutazone B.P. Two of the authors, S.M.R. and A.R. are thankful to University Grants Commission, New Delhi, for a fellowship and an associateship respectively.

REFERENCES

- Roy A, Gupta JK, Lahiri SC. Synthesis and anti-inflammatory activity of a few 5-(Indan-1'-y1)methyltetrazoles. J Ind Chem Soc 1983; 60: 377-80.
- Roy A, Lahiri SC. Studies on two novel antiinflammatory Indanylmethyltetrazoles. Ind J Pharmac 1985; 17: 63-6.
- 3 Ray SM, Lahiri SC. Studies on 5-(Indan-1'-y1)tetrazoles as potential non-steroidal anti-inflammatory agents. J Ind Chem Soc (in press).
- Roy A, Gupta JK, Lahiri SC. Anti-inflammatory derivatives of Indan-1-acetic acids with low gastric irritancy. Ind J. Physiol Pharmac 1983; 27: 329-33.

 Winter CA, Risley EA, Nuss GW. Carrageenan-induced oedema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exptl Biol Med 1962; 111: 544-47.

 Roy A, Roy SM, Gupta JK, Lahiri SC. A simple device for rapid measurement of rat paw oedema for evaluation 114 Ray et al.

of anti-inflammatory activity. Ind J Physiol Pharmac 1980; 24: 369-72.

- Newbould BB. The pharmacology of fenclozic acid [2- (4-chlorophenyl)-thiazol-4-ylacetic acid; I.C.I. 54, 450; 'Myalex']; a new compund with anti-inflammatory, analgesic and anti-pyretic activity. Br J Pharmac 1969; 35: 487-97.
- Cashin CH, Dawson W, Kitchen EA. The Pharmacology of benoxaprofen (2- [4-Chlorophenyl]- α-methyl-5-benzoxazole acetic acid), LRCL 3794, a new compound with anti-inflammatory activity apparently unrelated to inhibition of prostaglandin synthesis. J Pharm Pharmac 1977; 29: 330-36.
- Loux JJ, de Palma PD, Yankell SL. Anti-pyretic testing of aspirin in rats. Toxic Appl Pharmac 1972; 22: 672-5.
- Winter CA, Nuss GW. Pyretogenic effects of bacterial lipopolysaccharide and the assay of anti-pyretic drugs in rats. Toxic Appl Pharmac 1963; 5: 247-57.
- Hendershot LC, Forsaith J. Antagonism of the frequency of phenylquinone-induced writhing in the mouse by weak analgesics and non-analgesics. J Pharmac Exptl Ther 1959; 125: 237-40.
- Blumberg H, Wolf PS, Dayton HB. Use of writhing test for evaluating analgesic activity of narcotic antagonists. Proc Soc Exptl Biol Med 1965; 118: 763-6.

	inter in the second s		4 - 17-2.38,87 hoursest
- 3.5			
	1.22		

The state of the second st

EA 2 2.7 May 41 HOan an a loverhald og (27 an 107) in onto the second state the

2 DATE HERE BELLEVILLE

e terficor thank Mrs. Stantis Chamical - Are Helds for a fationable and an anather

2114199999

- [59] L. Organ, K. Liker, S. Weinsen, and M. Saraharan, and Annual S. Kimmin, Phys. Rev. Lett. 10, 100 (1997), arXiv:1011.0114 [arXiv:10.1011.0116].
- the house on a pillar of head of a
- and the balance of the set of the
- Weite A., Contas JK, Landar JC, Antonichian and Antonic States, 1975 and Industry and States and Antonic States and Antonic States and A Weiterich Weiterieum 1985; 27 (200-20).
- When CA Ship IA, have the Composite Lands and the state of the state o
- And A. Rey D.M. Derry, P. Lanes, P. A space devices